Applied Mathematics-II

University of Mumbai						
CLASS: F.E (All Branches of Engineering)		Semester	- 11			
SUBJECT: Applied N	lathematics - II					
Periods per week	Lecture	4				
01 Period of 60 min.	Practical					
	Tutorial	1				
		Hours	Marks			
Evaluation System	Theory Examination	3	100			
	Practical					
	Oral Examination					
	Term Work	-	25			
	Total		100			

Detai	Detailed Syllabus		
	Prerequisite : Idea of curve tracing in Cartesian, Parametric and Polar Forms. Standard curves such as straight lines, Circles, Parabolas, Hyperbola, Catenary Cissoid, Astroid, Cycloid, Lemniscate of Bernoulli. Cardiode, Concept of Solid Geometry- Planes, Spheres, Cones, Cylinders, Parabolloids.	02	
2.1	Beta and Gamma functions, Differentiation under integral sign2.1.1Definition of Beta and Gamma functions and properties.2.1.2Relation between Beta and Gamma functions (with proof).Duplicaiton formula (with proof).2.1.3Differentiation under the integral sign with constant limits of integration.	06	
2.2	Differential Equations of first order and first degree 2.2.1 Exact differential equations and those which can be reducible to the exact form by using integrating factors (four rules) 1. Homogeneous differential equations 2. $f(xy)ydx + g(xy)xdy = 0$ 3. $I.F = \int_{e} f(x)dx$ where $f(x) = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ $\frac{\partial N}{\partial N} = \frac{\partial M}{\partial M}$	04	
	4. I.F = $\int_{e} g(y)dy$ where $g(y) = \frac{\frac{\partial W}{\partial x} - \frac{\partial W}{\partial y}}{M}$ 2.2.2 Linear differential equations and differential reducible to the linear form		
	2.2.3 Numerical solutions of differential equations using Taylor's series method.		

2.3	Nume	rical solutions of differential equations of first order and first	
	degre		
	2.3.1	Euler's method, Modified Euler's method, Runge Kutta method	03
		of 4 th order. Comparison of numerical solution with the exact	
		solutions.	
	2.3.2	Linear differential equations with constant coefficients-	05
		Complimentary functions, particular integrals of differential]	
		equations of the type $f(D)y = X$ where X is e^{ax} ,	
		$sin(ax+b)$, $cos(ax+b)$, x^n , e^{ax} V, xV	
2.4	Linea	r differential equations with variable coefficients, Method of	
	variat	ion of parameters and Rectification.	
	2.4.1	Cachy's homogeneous linear differential equatin and Legendre's	02
		differential equation.	
	2.4.2	Method of variation of parameters.	01
	2.4.3	Simple application of differential equations of first and second	02
		order to electrical and mechanical engineering problems (no	
		formulation of differential equation)	
	2.4.4	Rectification of plane curves.	02
2.5	0	al Calculus-Double Integrals	
	2.5.1	Double Integration- Definition, geometrical interpolation,	03
		properties and evaluation	
	2.5.2	Evaluation of double integrals by changing the order of	06
	. .	integration and changing to polar form ral Calculus- Triple Integral and application of double and	
2.6			
		integrals, computer oriented techniques	0.0
	2.6.1	Triple Integration – definition and evaluation (Cartesian,	03
		Cylindrical and Spherical polar coordinates), Concept of	
	262	Jacobians.	02
	2.6.2	Applications of double integrals to compute Area, Mass and	03
	262	Volume. Application of triple integrals to compute Volume .	02
	2.6.3	Computer oriented techniques in problem solving using Scilab.	02

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only five questions need to be solved.
- 3. Question 1 will be compulsory and based on entire syllabus.
- 4. Remaining question will be mixed in nature (for example suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work	Marks
1. Attendance (Theory and Tutorial)	05
2. Tutorials covering entire portion	05
 Programming Assignments using Scilab Curve Tracing, Intersection of surfaces, evaluation of Double and Triple Integrals, Solution of Differential equations of 1st order and 1st degree 	05
4. Test (at least one)	10
	25

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Recommeded Books :

- Higher Engineering Mathematics, Dr. B.S. Grewal Khanna Publication.
- Differential Equation, Ross, Wiley India 3rd Ed.
- A textbook of Applied Mathematics, P.N. and J.N. Wartikar, Volume 1 and 2, Pune Vidyarthi Griha.
- Advanced Engineering Mathematics, Erwin Kreyszing, Wiley India, 8th Ed.
- Elementary Differential Equation, E.D.Rainville, P.E. & R.E. Bedient, Prentice Hall, 8th edition.